当前位置:首页 » 工作应聘 » 算法面试

算法面试

发布时间: 2021-01-01 02:46:58

A. 算法面试

我在《再谈“我是怎么招程序员”》中比较保守地说过,“问难的算法题并没有错,错的很多面试官只是在肤浅甚至错误地理解着面试算法题的目的。”,今天,我想加强一下这个观点——我反对纯算法题面试!(注意,我说的是纯算法题)图片源Wikipedia(点击图片查看词条)我再次引用我以前的一个观点——能解算法题并不意味着这个人就有能力就能在工作中解决问题,你可以想想,小学奥数题可能比这些题更难,但并不意味着那些奥数能手就能解决实际问题。好了,让我们来看一个示例(这个示例是昨天在微博上的一个讨论),这个题是——“找出无序数组中第2大的数”,几乎所有的人都用了O(n)的算法,我相信对于我们这些应试教育出来的人来说,不用排序用O(n)算法是很正常的事,连我都不由自主地认为O(n)算法是这个题的标准答案。我们太习惯于标准答案了,这是我国教育最悲哀的地方。(广义的洗脑就是让你的意识依赖于某个标准答案,然后通过给你标准答案让你不会思考而控制你)功能性需求分析试想,如果我们在实际工作中得到这样一个题 我们会怎么做?我一定会分析这个需求,因为我害怕需求未来会改变,今天你叫我找一个第2大的数,明天你找我找一个第4大的数,后天叫我找一个第100大的数,我不搞死了。需求变化是很正常的事。分析完这个需求后,我会很自然地去写找第K大数的算法——难度一下子就增大了。很多人会以为找第K大的需求是一种“过早扩展”的思路,不是这样的,我相信我们在实际编码中写过太多这样的程序了,你一定不会设计出这样的函数接口 —— Find2ndMaxNum(int* array, int len),就好像你不会设计出 DestroyBaghdad(); 这样的接口,而是设计一个DestoryCity( City& ); 的接口,而把Baghdad当成参数传进去!所以,你应该是声明一个叫FindKthMaxNum(int* array, int len, int kth),把2当成参数传进去。这是最基本的编程方法,用数学的话来说,叫代数!最简单的需求分析方法就是把需求翻译成函数名,然后看看是这个接口不是很二?!(注:不要纠结于FindMaxNum()或FindMinNum(),因为这两个函数名的业务意义很清楚了,不像Find2ndMaxNum()那么二)非功能性需求分析性能之类的东西从来都是非功能性需求,对于算法题,我们太喜欢研究算法题的空间和时间复杂度了。我们希望做到空间和时间双丰收,这是算法学术界的风格。所以,习惯于标准答案的我们已经失去思考的能力,只会机械地思考算法之内的性能,而忽略了算法之外的性能。如果题目是——“从无序数组中找到第K个最大的数”,那么,我们一定会去思考用O(n)的线性算法找出第K个数。事实上,也有线性算法——STL中可以用nth_element求得类似的第n大的数,其利用快速排序的思想,从数组S中随机找出一个元素X,把数组分为两部分Sa和Sb。Sa中的元素大于等于X,Sb中元素小于X。这时有两种情况:1)Sa中元素的个数小于k,则Sb中的第 k-|Sa|个元素即为第k大数;2) Sa中元素的个数大于等于k,则返回Sa中的第k大数。时间复杂度近似为O(n)。搞学术的nuts们到了这一步一定会欢呼胜利!但是他们哪里能想得到性能的需求分析也是来源自业务的!我们一说性能,基本上是个人都会问,请求量有多大?如果我们的FindKthMaxNum()的请求量是m次,那么你的这个每次都要O(n)复杂度的算法得到的效果就是O(n*m),这一点,是书呆子式的学院派人永远想不到的。因为应试教育让我们不会从实际思考了。工程式的解法根据上面的需求分析,有软件工程经验的人的解法通常会这样:1)把数组排序,从大到小。2)于是你要第k大的数,就直接访问 array[k]。排序只需要一次,O(n*log(n)),然后,接下来的m次对FindKthMaxNum()的调用全是O(1)的,整体复杂度反而成了线性的。其实,上述的还不是工程式的最好的解法,因为,在业务中,那数组中的数据可能会是会变化的,所以,如果是用数组排序的话,有数据的改动会让我重新排序,这个太耗性能了,如果实际情况中会有很多的插入或删除操作,那么可以考虑使用B+树。工程式的解法有以下特点:1)很方便扩展,因为数据排好序了,你还可以方便地支持各种需求,如从第k1大到k2大的数据(那些学院派写出来的代码在拿到这个需求时又开始挠头苦想了)2)规整的数据会简化整体的算法复杂度,从而整体性能会更好。(公欲善其事,必先利其器)3)代码变得清晰,易懂,易维护!(学院派的和STL一样的近似O(n)复杂度的算法没人敢动)争论你可能会和我有以下争论,如果程序员做这个算法题用排序的方式,他一定不会像你想那么多。是的,你说得对。但是我想说,很多时候,我们直觉地思考,恰恰是正确的路。因为“排序”这个思路符合人类大脑处理问题的方式,而使用学院派的方式是反大脑直觉的。反大脑直觉的,通常意味着晦涩难懂,维护成本上升。就是一道面试题,我就是想测试一下你的算法技能,这也扯太多了。没问题,不过,我们要清楚我们是在招什么人?是一个只会写算法的人,还是一个会做软件的人?这个只有你自己最清楚。这个算法题太容易诱导到学院派的思路了。是的这道“找出第K大的数”,其实可以变换为更为业务一点的题目——“我要和别的商户竞价,我想排在所有竞争对手报价的第K名,请写一个程序,我输入K,和一个商品名,系统告诉我应该订多少价?(商家的所有商品的报价在一数组中)”——业务分析,整体性能,算法,数据结构,增加需求让应聘者重构,这一个问题就全考了。你是不是在说算法不重要,不用学?千万别这样理解我,搞得好像如果面试不面,我就可以不学。算法很重要,算法题能锻炼我们的思维,而且也有很多实际用处。我这篇文章不是让大家不要去学算法,这是完全错误的,我是让大家带着业务问题去使用算法。问你业务问题,一样会问到算法题上来。小结看过这上面的分析,我相信你明白我为什么反对纯算法面试题了。原因就是纯算法的面试题根本不能反应一个程序的综合素质!那么,在面试中,我们应该要考量程序员的那些综合素质呢?我以为有下面这些东西:会不会做需求分析?怎么理解问题的?解决问题的思路是什么?想法如何?会不会对基础的算法和数据结构灵活运用?另外,我们知道,对于软件开发来说,在工程上,难是的下面是这些挑战:软件的维护成本远远大于软件的开发成本。软件的质量变得越来越重要,所以,测试工作也变得越来越重要。软件的需求总是在变的,软件的需求总是一点一点往上加的。程序中大量的代码都是在处理一些错误的或是不正常的流程。所以,对于编程能力上,我们应该主要考量程序员的如下能力:设计是否满足对需求的理解,并可以应对可能出现的需求变化。

B. 老生常谈:面试算法有必要吗

首先,面试什么东西不是被面试者决定的,而是面试者决定的。

其次,编程,本回质上是用计算机解决问题,而答经过多年业界总结出来的经典算法,就是针对经典而典型问题的解决方案,学习这些算法,除了能够解决这些典型问题之外还能够掌握解决问题的能力,从而触类旁通。所以说,面试算法是考察被面试者解决问题能力的一种方法。

第三,面试内容除了它能否起到考察作用之外,还要考虑成本问题。看一个被面试者能否做出一道算法题,是一个成本很低的做法(甚至连电脑都不需要),这对于公司来说是可以接受的。

综上所述,面试算法有必要。

C. 程序员面试时都要考算法吗

看应聘什么职位...我面试的时候一点算法都没有涉及到...
某些特定开发岗位确实需回要扎实的算法基础.比如根答云存储,大数据什么的.但是像普通的程序开发岗位应该对算法要求不大.

所以,我猜测:如果面试跟算法不怎么相关的职位考官还问算法的问题时,应该是你前面的回答还不足以让考官录用你。考官在给你展示自己的机会.

D. 一道面试算法题

这是典型的桶排序算法,
假设有9个桶,每个桶里存放N个数字。桶应该是唯一的。
所以推出结论:
1。桶是唯一的(我们因此可以利用Hashtable的唯一性来做到);
2。桶内成员可以不排序,因此可以利用数组或者Vector来做到;
3。Hashtable需要主键key来唯一标识,正好数字1~9是不重复的,是唯一的;
3。把每个数值的第一位取出来,以第一位值做为key找到hashtable中的相应vector,再将vector.addElements(该数值);
4。完成;

具体做法:
1.生成桶,9个桶,每个桶以数字1~9做为主键命名
Hashtable table=new Hashtable();
for(int i=1;i<10;i++){
Vector vector=new Vector();
table.put(new String(i), vector);
}
2. 遍历每个数字,将当前数字的第一位分解出来,办法有很多种,比如除十法,这里介绍直接转字符串再取第一位法:
假设你的要处理的数字们放在数组里面int[] tmp;
for(int i=0;i<tmp.length;i++){
int num=tmp[i];
String str=new String(num);
char ch=str.charAt(0);
//压入到桶里,先把想要的桶找到,利用主键
Vector vect=(Vector)table.get(""+ch);
//找到桶后再把数值压到桶里
vect.addElements(new Integer(num));
}

//取出来的时候,有多种方法,一种是利用key取出Vector,再遍历Vector,得到其中元素,元素的key为String, 内容为Integer

另一种方法是先遍历hashtable再遍历vector

同样的应用还有给一幅被洗过的扑克牌进行升或降排弃,因此可以建13个桶(A~K),每个桶内的牌再按花色排序(相当于对Vector排序,也可以不用Vector而直接用数组或者ArrayList等等)

我看了你的修改提问,现回答如下:
即使不能使用java己经封装好的Hashtable类,自己也可以很轻易地利用代码编写出类似于Hashtable的集合类,用来包容其它对象,并以主键key来唯一标识.

如果你不想这样思考,那么直接用数组来实现桶排序也很方便,外层数组长度是固定的,即1~9共9个数组元素 Elements e=new Elements[9]。
这九个数组元素不是数字,必须是你自定义的类。并用这个类形成链表结构
比如:
public class Element{
int data;//存数字
Element next=null;//下一个元素是谁
}
比如有数字 51,52,53 这三个数都是以5打头,那么他们应该放在一个桶里面,即第五号桶,也就是外层数组的第个元素中。

if( 判断该数字,是否应该放在5号桶){
Elements tmp=new Elements();
tmp.data=该数字;
Elements current=e[4];
if(current==null){current=tmp;}//如果该桶以前从未放过数字,则放进去的就是头部,直接引用就行了,比如51应该放在头部
else{//如果该桶以前己经放过数字,如51,己经放了,现在放52。52就应该做为51的next元素,而53就是52的next就行了
while(current!=null){current=current.next;}//遍历,从而取到最后一个元素的引用
//取到最后一个元素后,current=tmp;即可,这样就形成了链表结构
}
}

通过上述代表形成的结果是, 外层结构是9个元素组成的数组
每个数组元素是Elements类对象形成的链表结构,有头有层通过next字段串连起来。
如果要排序,只需要对每个链表内部进行排序就可以了

E. 面试和算法心得 怎么样 知乎

考查要点:

对Web标准的理解
浏览器差异
CSS基本功:布局、盒模型、选择器优先级及使用等专
Javascript 基础、属JS面向对象实现原理、闭包机制、作用域
通常可以做一些小练习来判断TA的水平,js 虽然很灵活,但是具体的实现方式能体现出一个人的全局观,随着代码规模的增长,复杂度增加,如何合理划分模块实现功能和接口的能力比较重要。这里有一份前不久我出的试题,难度不算大

作者:马骁
链接:http://www.hu.com/question/19568008/answer/12242523
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

F. java算法面试题:排序都有哪几种方法

一、冒泡排序
[java] view plain
package sort.bubble;
import java.util.Random;
/**
* 依次比较相邻的两个数,将小数放在前面,大数放在后面
* 冒泡排序,具有稳定性
* 时间复杂度为O(n^2)
* 不及堆排序,快速排序O(nlogn,底数为2)
* @author liangge
*
*/
public class Main {
public static void main(String[] args) {
Random ran = new Random();
int[] sort = new int[10];
for(int i = 0 ; i < 10 ; i++){
sort[i] = ran.nextInt(50);
}
System.out.print("排序前的数组为");
for(int i : sort){
System.out.print(i+" ");
}
buddleSort(sort);
System.out.println();
System.out.print("排序后的数组为");
for(int i : sort){
System.out.print(i+" ");
}
}
/**
* 冒泡排序
* @param sort
*/
private static void buddleSort(int[] sort){
for(int i=1;i<sort.length;i++){
for(int j=0;j<sort.length-i;j++){
if(sort[j]>sort[j+1]){
int temp = sort[j+1];
sort[j+1] = sort[j];
sort[j] = temp;
}
}
}
}
}
二、选择排序
[java] view plain
package sort.select;
import java.util.Random;
/**
* 选择排序
* 每一趟从待排序的数据元素中选出最小(或最大)的一个元素,
* 顺序放在已排好序的数列的最后,直到全部待排序的数据元素排完。
* 选择排序是不稳定的排序方法。
* @author liangge
*
*/
public class Main {
public static void main(String[] args) {
Random ran = new Random();
int[] sort = new int[10];
for (int i = 0; i < 10; i++) {
sort[i] = ran.nextInt(50);
}
System.out.print("排序前的数组为");
for (int i : sort) {
System.out.print(i + " ");
}
selectSort(sort);
System.out.println();
System.out.print("排序后的数组为");
for (int i : sort) {
System.out.print(i + " ");
}
}
/**
* 选择排序
* @param sort
*/
private static void selectSort(int[] sort){
for(int i =0;i<sort.length-1;i++){
for(int j = i+1;j<sort.length;j++){
if(sort[j]<sort[i]){
int temp = sort[j];
sort[j] = sort[i];
sort[i] = temp;
}
}
}
}
}
三、快速排序
[java] view plain
package sort.quick;
/**
* 快速排序 通过一趟排序将要排序的数据分割成独立的两部分, 其中一部分的所有数据都比另外一部分的所有数据都要小,
* 然后再按此方法对这两部分数据分别进行快速排序, 整个排序过程可以递归进行,以此达到整个数据变成有序序列。
* @author liangge
*
*/
public class Main {
public static void main(String[] args) {
int[] sort = { 54, 31, 89, 33, 66, 12, 68, 20 };
System.out.print("排序前的数组为:");
for (int data : sort) {
System.out.print(data + " ");
}
System.out.println();
quickSort(sort, 0, sort.length - 1);
System.out.print("排序后的数组为:");
for (int data : sort) {
System.out.print(data + " ");
}
}
/**
* 快速排序
* @param sort 要排序的数组
* @param start 排序的开始座标
* @param end 排序的结束座标
*/
public static void quickSort(int[] sort, int start, int end) {
// 设置关键数据key为要排序数组的第一个元素,
// 即第一趟排序后,key右边的数全部比key大,key左边的数全部比key小
int key = sort[start];
// 设置数组左边的索引,往右移动判断比key大的数
int i = start;
// 设置数组右边的索引,往左移动判断比key小的数
int j = end;
// 如果左边索引比右边索引小,则还有数据没有排序
while (i < j) {
while (sort[j] > key && j > start) {
j--;
}
while (sort[i] < key && i < end) {
i++;
}
if (i < j) {
int temp = sort[i];
sort[i] = sort[j];
sort[j] = temp;
}
}
// 如果左边索引比右边索引要大,说明第一次排序完成,将sort[j]与key对换,
// 即保持了key左边的数比key小,key右边的数比key大
if (i > j) {
int temp = sort[j];
sort[j] = sort[start];
sort[start] = temp;
}
//递归调用
if (j > start && j < end) {
quickSort(sort, start, j - 1);
quickSort(sort, j + 1, end);
}
}
}
[java] view plain
/**
* 快速排序
*
* @param a
* @param low
* @param high
* voidTest
*/
public static void kuaisuSort(int[] a, int low, int high)
{
if (low >= high)
{
return;
}
if ((high - low) == 1)
{
if (a[low] > a[high])
{
swap(a, low, high);
return;
}
}
int key = a[low];
int left = low + 1;
int right = high;
while (left < right)
{
while (left < right && left <= high)// 左边向右
{
if (a[left] >= key)
{
break;
}
left++;
}
while (right >= left && right > low)
{
if (a[right] <= key)
{
break;
}
right--;
}
if (left < right)
{
swap(a, left, right);
}
}
swap(a, low, right);
kuaisuSort(a, low, right);
kuaisuSort(a, right + 1, high);
}
四、插入排序
[java] view plain
package sort.insert;
/**
* 直接插入排序
* 将一个数据插入到已经排好序的有序数据中,从而得到一个新的、个数加一的有序数据
* 算法适用于少量数据的排序,时间复杂度为O(n^2)。是稳定的排序方法。
*/
import java.util.Random;
public class DirectMain {
public static void main(String[] args) {
Random ran = new Random();
int[] sort = new int[10];
for (int i = 0; i < 10; i++) {
sort[i] = ran.nextInt(50);
}
System.out.print("排序前的数组为");
for (int i : sort) {
System.out.print(i + " ");
}
directInsertSort(sort);
System.out.println();
System.out.print("排序后的数组为");
for (int i : sort) {
System.out.print(i + " ");
}
}
/**
* 直接插入排序
*
* @param sort
*/
private static void directInsertSort(int[] sort) {
for (int i = 1; i < sort.length; i++) {
int index = i - 1;
int temp = sort[i];
while (index >= 0 && sort[index] > temp) {
sort[index + 1] = sort[index];
index--;
}
sort[index + 1] = temp;
}
}
}
顺便添加一份,差不多的
[java] view plain
public static void charuSort(int[] a)
{
int len = a.length;
for (int i = 1; i < len; i++)
{
int j;
int temp = a[i];
for (j = i; j > 0; j--)//遍历i之前的数字
{
//如果之前的数字大于后面的数字,则把大的值赋到后面
if (a[j - 1] > temp)
{
a[j] = a[j - 1];
} else
{
break;
}
}
a[j] = temp;
}
}
把上面整合起来的一份写法:
[java] view plain
/**
* 插入排序:
*
*/
public class InsertSort {
public void sort(int[] data) {
for (int i = 1; i < data.length; i++) {
for (int j = i; (j > 0) && (data[j] < data[j - 1]); j--) {
swap(data, j, j - 1);
}
}
}
private void swap(int[] data, int i, int j) {
int temp = data[i];
data[i] = data[j];
data[j] = temp;
}
}
五、顺便贴个二分搜索法
[java] view plain
package search.binary;
public class Main {
public static void main(String[] args) {
int[] sort = {1,2,3,4,5,6,7,8,9,10};
int mask = binarySearch(sort,6);
System.out.println(mask);
}
/**
* 二分搜索法,返回座标,不存在返回-1
* @param sort
* @return
*/
private static int binarySearch(int[] sort,int data){
if(data<sort[0] || data>sort[sort.length-1]){
return -1;
}
int begin = 0;
int end = sort.length;
int mid = (begin+end)/2;
while(begin <= end){
mid = (begin+end)/2;
if(data > sort[mid]){
begin = mid + 1;
}else if(data < sort[mid]){
end = mid - 1;
}else{
return mid;
}
}
return -1;
}
}

G. 做图像类算法面试的时候会不会面试数学

我在《再谈逗我是怎么招程序员地》中比较保守地说过,逗问难的算法题并没有错,错的很多面试官只是在肤浅甚至错误地理解着面试算法题的目的。地,今天,我想加强一下这个观点——我反对纯算法题面试!(注意,我说的是纯算法题)图片源Wikipedia(点击图片查看词条)我再次引用我以前的一个观点——能解算法题并不意味着这个人就有能力就能在工作中解决问题,你可以想想,小学奥数题可能比这些题更难,但并不意味着那些奥数能手就能解决实际问题。好了,让我们来看一个示例(这个示例是昨天在微博上的一个讨论),这个题是——逗找出无序数组中第2大的数地,几乎所有的人都用了O(n)的算法,我相信对于我们这些应试教育出来的人来说,不用排序用O(n)算法是很正常的事,连我都不由自主地认为O(n)算法是这个题的标准答案。我们太习惯于标准答案了,这是我国教育最悲哀的地方。(广义的洗脑就是让你的意识依赖于某个标准答案,然后通过给你标准答案让你不会思考而控制你)功能性需求分析试想,如果我们在实际工作中得到这样一个题 我们会怎么做看我一定会分析这个需求,因为我害怕需求未来会改变,今天你叫我找一个第2大的数,明天你找我找一个第4大的数,后天叫我找一个第100大的数,我不搞死了。需求变化是很正常的事。分析完这个需求后,我会很自然地去写找第K大数的算法——难度一下子就增大了。很多人会以为找第K大的需求是一种逗过早扩展地的思路,不是这样的,我相信我们在实际编码中写过太多这样的程序了,你一定不会设计出这样的函数接口 —— Find2ndMaxNum(int* array, int len),就好像你不会设计出 DestroyBaghdad(); 这样的接口,而是设计一个DestoryCity( City& ); 的接口,而把Baghdad当成参数传进去!所以,你应该是声明一个叫FindKthMaxNum(int* array, int len, int kth),把2当成参数传进去。这是最基本的编程方法,用数学的话来说,叫代数!最简单的需求分析方法就是把需求翻译成函数名,然后看看是这个接口不是很二看!(注:不要纠结于FindMaxNum()或FindMinNum(),因为这两个函数名的业务意义很清楚了,不像Find2ndMaxNum()那么二)非功能性需求分析性能之类的东西从来都是非功能性需求,对于算法题,我们太喜欢研究算法题的空间和时间复杂度了。我们希望做到空间和时间双丰收,这是算法学术界的风格。所以,习惯于标准答案的我们已经失去思考的能力,只会机械地思考算法之内的性能,而忽略了算法之外的性能。如果题目是——逗从无序数组中找到第K个最大的数地,那么,我们一定会去思考用O(n)的线性算法找出第K个数。事实上,也有线性算法——STL中可以用nth_element求得类似的第n大的数,其利用快速排序的思想,从数组S中随机找出一个元素X,把数组分为两部分Sa和Sb。Sa中的元素大于等于X,Sb中元素小于X。这时有两种情况:1)Sa中元素的个数小于k,则Sb中的第 k-|Sa|个元素即为第k大数;2) Sa中元素的个数大于等于k,则返回Sa中的第k大数。时间复杂度近似为O(n)。搞学术的nuts们到了这一步一定会欢呼胜利!但是他们哪里能想得到性能的需求分析也是来源自业务的!我们一说性能,基本上是个人都会问,请求量有多大看如果我们的FindKthMaxNum()的请求量是m次,那么你的这个每次都要O(n)复杂度的算法得到的效果就是O(n*m),这一点,是书呆子式的学院派人永远想不到的。因为应试教育让我们不会从实际思考了。工程式的解法根据上面的需求分析,有软件工程经验的人的解法通常会这样:1)把数组排序,从大到小。2)于是你要第k大的数,就直接访问 array[k]。排序只需要一次,O(n*log(n)),然后,接下来的m次对FindKthMaxNum()的调用全是O(1)的,整体复杂度反而成了线性的。其实,上述的还不是工程式的最好的解法,因为,在业务中,那数组中的数据可能会是会变化的,所以,如果是用数组排序的话,有数据的改动会让我重新排序,这个太耗性能了,如果实际情况中会有很多的插入或删除操作,那么可以考虑使用B+树。工程式的解法有以下特点:1)很方便扩展,因为数据排好序了,你还可以方便地支持各种需求,如从第k1大到k2大的数据(那些学院派写出来的代码在拿到这个需求时又开始挠头苦想了)2)规整的数据会简化整体的算法复杂度,从而整体性能会更好。(公欲善其事,必先利其器)3)代码变得清晰,易懂,易维护!(学院派的和STL一样的近似O(n)复杂度的算法没人敢动)争论你可能会和我有以下争论,如果程序员做这个算法题用排序的方式,他一定不会像你想那么多。是的,你说得对。但是我想说,很多时候,我们直觉地思考,恰恰是正确的路。因为逗排序地这个思路符合人类大脑处理问题的方式,而使用学院派的方式是反大脑直觉的。反大脑直觉的,通常意味着晦涩难懂,维护成本上升。就是一道面试题,我就是想测试一下你的算法技能,这也扯太多了。没问题,不过,我们要清楚我们是在招什么人看是一个只会写算法的人,还是一个会做软件的人看这个只有你自己最清楚。这个算法题太容易诱导到学院派的思路了。是的这道逗找出第K大的数地,其实可以变换为更为业务一点的题目——逗我要和别的商户竞价,我想排在所有竞争对手报价的第K名,请写一个程序,我输入K,和一个商品名,系统告诉我应该订多少价看(商家的所有商品的报价在一数组中)地——业务分析,整体性能,算法,数据结构,增加需求让应聘者重构,这一个问题就全考了。你是不是在说算法不重要,不用学看千万别这样理解我,搞得好像如果面试不面,我就可以不学。算法很重要,算法题能锻炼我们的思维,而且也有很多实际用处。我这篇文章不是让大家不要去学算法,这是完全错误的,我是让大家带着业务问题去使用算法。问你业务问题,一样会问到算法题上来。小结看过这上面的分析,我相信你明白我为什么反对纯算法面试题了。原因就是纯算法的面试题根本不能反应一个程序的综合素质!那么,在面试中,我们应该要考量程序员的那些综合素质呢看我以为有下面这些东西:会不会做需求分析看怎么理解问题的看解决问题的思路是什么看想法如何看会不会对基础的算法和数据结构灵活运用看另外,我们知道,对于软件开发来说,在工程上,难是的下面是这些挑战:软件的维护成本远远大于软件的开发成本。软件的质量变得越来越重要,所以,测试工作也变得越来越重要。软件的需求总是在变的,软件的需求总是一点一点往上加的。程序中大量的代码都是在处理一些错误的或是不正常的流程。所以,对于编程能力上,我们应该主要考量程序员的如下能力:设计是否满足对需求的理解,并可以应对可能出现的需求变化。

H. 要面试算法工程师,大神给点相关经验啊

算法是比较复杂又基础的学科,每个学编程的人都会学习大量的算法。而根据统计,以下这18个问题是面试中最容易遇到的,本文给出了一些基本答案,供算法方向工程师或对此感兴趣的程序员参考。
1)请简单解释算法是什么?
算法是一个定义良好的计算过程,它将一些值作为输入并产生相应的输出值。简单来说,它是将输入转换为输出的一系列计算步骤。
2)解释什么是快速排序算法?
快速排序算法能够快速排序列表或查询。它基于分割交换排序的原则,这种类型的算法占用空间较小,它将待排序列表分为三个主要部分:
·小于Pivot的元素
·枢轴元素Pivot(选定的比较值)
·大于Pivot的元素
3)解释算法的时间复杂度?
算法的时间复杂度表示程序运行完成所需的总时间,它通常用大O表示法来表示。
4)请问用于时间复杂度的符号类型是什么?
用于时间复杂度的符号类型包括:
·Big Oh:它表示小于或等于目标多项式
·Big Omega:它表示大于或等于目标多项式
·Big Theta:它表示与目标多项式相等
·Little Oh:它表示小于目标多项式
·Little Omega:它表示大于目标多项式
5)解释二分法检索如何工作?
在二分法检索中,我们先确定数组的中间位置,然后将要查找的值与数组中间位置的值进行比较,若小于数组中间值,则要查找的值应位于该中间值之前,依此类推,不断缩小查找范围,直至得到最终结果。
6)解释是否可以使用二分法检索链表?
由于随机访问在链表中是不可接受的,所以不可能到达O(1)时间的中间元素。因此,对于链表来说,二分法检索是不可以的(对顺序链表或排序后的链表是可以用的)。
7)解释什么是堆排序?
堆排序可以看成是选择排序的改进,它可以定义为基于比较的排序算法。它将其输入划分为未排序和排序的区域,通过不断消除最小元素并将其移动到排序区域来收缩未排序区域。
8)说明什么是Skip list?
Skip list数据结构化的方法,它允许算法在符号表或字典中搜索、删除和插入元素。在Skip list中,每个元素由一个节点表示。搜索函数返回与key相关的值的内容。插入操作将指定的键与新值相关联,删除操作可删除指定的键。
9)解释插入排序算法的空间复杂度是多少?
插入排序是一种就地排序算法,这意味着它不需要额外的或仅需要少量的存储空间。对于插入排序,它只需要将单个列表元素存储在初始数据的外侧,从而使空间复杂度为O(1)。
10)解释什么是“哈希算法”,它们用于什么?
“哈希算法”是一个哈希函数,它使用任意长度的字符串,并将其减少为唯一的固定长度字符串。它用于密码有效性、消息和数据完整性以及许多其他加密系统。
11)解释如何查找链表是否有循环?
要知道链表是否有循环,我们将采用两个指针的方法。如果保留两个指针,并且在处理两个节点之后增加一个指针,并且在处理每个节点之后,遇到指针指向同一个节点的情况,这只有在链表有循环时才会发生。
12)解释加密算法的工作原理?
加密是将明文转换为称为“密文”的密码格式的过程。要转换文本,算法使用一系列被称为“键”的位来进行计算。密钥越大,创建密文的潜在模式数越多。大多数加密算法使用长度约为64到128位的固定输入块,而有些则使用流方法。
13)列出一些常用的加密算法?
一些常用的加密算法是:
·3-way
·Blowfish
·CAST
·CMEA
·GOST
·DES 和Triple DES
·IDEA
·LOKI等等
14)解释一个算法的最佳情况和最坏情况之间有什么区别?
·最佳情况:算法的最佳情况解释为算法执行最佳的数据排列。例如,我们进行二分法检索,如果目标值位于正在搜索的数据中心,则这就是最佳情况,最佳情况时间复杂度为0。
·最差情况:给定算法的最差输入参考。例如快速排序,如果选择关键值的子列表的最大或最小元素,则会导致最差情况出现,这将导致时间复杂度快速退化到O(n2)。
15)解释什么是基数排序算法?
基数排序又称“桶子法”,是通过比较数字将其分配到不同的“桶里”来排序元素的。它是线性排序算法之一。
16)解释什么是递归算法?
递归算法是一个解决复杂问题的方法,将问题分解成较小的子问题,直到分解的足够小,可以轻松解决问题为止。通常,它涉及一个调用自身的函数。
17)提到递归算法的三个定律是什么?
所有递归算法必须遵循三个规律:
·递归算法必须有一个基点
·递归算法必须有一个趋向基点的状态变化过程
·递归算法必须自我调用
18)解释什么是冒泡排序算法?
冒泡排序算法也称为下沉排序。在这种类型的排序中,要排序的列表的相邻元素之间互相比较。如果它们按顺序排列错误,将交换值并以正确的顺序排列,直到最终结果“浮”出水面。
满意记得采纳哈

I. 面试算法题一般给多少时间

主要是让你用计算机就可以啊

J. Java面试笔试,数据结构和算法考到什么程度

你说的那个数据结构不一定考的。 Java面试就那么点东西,各个公司也不一回样。 答有的分笔试和机试。这些公司想看看实际面试人员的能力,节省了以后的时候。 笔试中,无非就是一些概念性的东西巴了。 比如:jsp是servlet吗? servlet的生存周期;还有一些面向对象的知识。这些平常用心的话都没问题,即使临阵磨枪也行。 那么机试就的要看你自己的能力了,对框架的属性程度。还有就是在也不能常见的对数据 库的CRUD也就是增删改查操作。机试都好这口。 其实面试如果也没笔试机试那么就问几道题的话,如果是技术人,几道题下来就知道你的底子了,在问些逻辑上的也就知道要你还是不要你了。 在有你要对一些数据库知识了解一些。 做java的 oracle 得达到掌握 sql server 了解就行 基本语法啥的就可以了 mysql 这个也得达到掌握 别的就不要会用到

热点内容
鬼片高清画质。电影。 发布:2024-08-19 09:14:10 浏览:650
一家看电影网 发布:2024-08-19 08:57:54 浏览:155
韩国大尸度电影推荐 发布:2024-08-19 08:55:58 浏览:719
接吻电影的名字美国 发布:2024-08-19 08:41:41 浏览:758
韩剧女主高中就怀孕了剧名 发布:2024-08-19 08:00:29 浏览:692
蓝色头发电影女主角 发布:2024-08-19 07:51:59 浏览:849
台湾电影老师上了学生 发布:2024-08-19 07:36:20 浏览:964
两人吃屎的电影 发布:2024-08-19 07:25:07 浏览:450
有裸露下体的大尺度电影吗 发布:2024-08-19 07:20:50 浏览:790
好看的电影在线观看免费 发布:2024-08-19 06:55:37 浏览:912